Regularization Path of Cross-Validation Error Lower Bounds
نویسندگان
چکیده
Careful tuning of a regularization parameter is indispensable in many machine learning tasks because it has a significant impact on generalization performances. Nevertheless, current practice of regularization parameter tuning is more of an art than a science, e.g., it is hard to tell how many grid-points would be needed in cross-validation (CV) for obtaining a solution with sufficiently small CV error. In this paper we propose a novel framework for computing a lower bound of the CV errors as a function of the regularization parameter, which we call regularization path of CV error lower bounds. The proposed framework can be used for providing a theoretical approximation guarantee on a set of solutions in the sense that how far the CV error of the current best solution could be away from best possible CV error in the entire range of the regularization parameters. Our numerical experiments demonstrate that a theoretically guaranteed choice of a regularization parameter in the above sense is possible with reasonable computational costs.
منابع مشابه
Model Selection for the l2-SVM by Following the Regularization Path
For a support vector machine, model selection consists in selecting the kernel function, the values of its parameters, and the amount of regularization. To set the value of the regularization parameter, one can minimize an appropriate objective function over the regularization path. A priori, this requires the availability of two elements: the objective function and an algorithm computing the r...
متن کاملModel Selection for the ℓ2-SVM by Following the Regularization Path
For a support vector machine, model selection consists in selecting the kernel function, the values of its parameters, and the amount of regularization. To set the value of the regularization parameter, one can minimize an appropriate objective function over the regularization path. A priori, this requires the availability of two elements: the objective function and an algorithm computing the r...
متن کاملA New Generalized Error Path Algorithm for Model Selection
Model selection with cross validation (CV) is very popular in machine learning. However, CV with grid and other common search strategies cannot guarantee to find the model with minimum CV error, which is often the ultimate goal of model selection. Recently, various solution path algorithms have been proposed for several important learning algorithms including support vector classification, Lass...
متن کاملEarly Stopping and Non-parametric Regression: An Optimal Data-dependent Stopping Rule
Early stopping is a form of regularization based on choosing when to stop running an iterative algorithm. Focusing on non-parametric regression in a reproducing kernel Hilbert space, we analyze the early stopping strategy for a form of gradient-descent applied to the least-squares loss function. We propose a data-dependent stopping rule that does not involve hold-out or cross-validation data, a...
متن کاملRethinking Biased Estimation: Improving Maximum Likelihood and the Cramér-Rao Bound
One of the prime goals of statistical estimation theory is the development of performance bounds when estimating parameters of interest in a given model, as well as constructing estimators that achieve these limits. When the parameters to be estimated are deterministic, a popular approach is to bound the mean-squared error (MSE) achievable within the class of unbiased estimators. Although it is...
متن کامل